EN FR
EN FR


Section: Research Program

Micro-Dynamics

Micro-dynamics involve low-level phenomena and human abilities which are related to short time/instantness and to perception-action coupling in interaction, when the user has almost no control or consciousness of the action once it has been started. From a system perspective, it has implications mostly on input and output (I/O) management.

Transfer functions design and latency management

We have developed a recognized expertise in the characterization and the design of transfer functions  [34], [45], i. e., the algorithmic transformations of raw user input for system use. Ideally, transfer functions should match the interaction context. Yet the question of how to maximize one or more criteria in a given context remains an open one, and on-demand adaptation is difficult because transfer functions are usually implemented at the lowest possible level to avoid latency. Latency has indeed long been known as a determinant of human performance in interactive systems  [41] and recently regained attention with touch interactions  [40]. These two problems require cross examination to improve performance with interactive systems: Latency can be a confounding factor when evaluating the effectiveness of transfer functions, and transfer functions can also include algorithms to compensate for latency.

We have recently proposed new cheap but robust methods for the measurement of end-to-end latency [2] and are currently working on compensation methods and the evaluation of their perceived side effects. Our goal is then to automatically adapt the transfer function to individual users and contexts of use while reducing latency in order to support stable and appropriate control. To achieve this, we will investigate combinations of low-level (embedded) and high-level (application) ways to take user capabilities and task characteristics into account and reduce or compensate for latency in different contexts, e. g., using a mouse or a touchpad, a touch-screen, an optical finger navigation device or a brain-computer interface. From an engineering perspective, this knowledge on low-level human factors will help us to rethink and redesign the I/O loop of interactive systems in order to better account for them and achieve more adapted and adaptable perception-action coupling.

Tactile feedback & haptic perception

We are also concerned with the physicality of human-computer interaction, with a focus on haptic perception and related technologies. For instance, when interacting with virtual objects such as software buttons on a touch surface, the user cannot feel the click sensation like with physical buttons. The tight coupling between how we perceive and how we manipulate objects is then essentially broken although this is instrumental for efficient direct manipulation. We have addressed this issue in multiple contexts by designing, implementing and evaluating novel applications of tactile feedback [5].

In comparison with many other modalities, one difficulty with tactile feedback is its diversity. It groups sensations of forces, vibrations, friction or deformation. Although this is a richness, it also raises usability and technological challenges since each kind of haptic stimulation requires different kinds of actuators with their own parameters and thresholds. And results from one are hardly applicable to others. On a “knowledge” point of view, we want to better understand and empirically classify haptic variables and the kind of information they can represent (continuous, ordinal, nominal), their resolution, and their applicability to various contexts. From the “technology” perspective, we want to develop tools to inform and ease the design of haptic interactions taking best advantage of the different technologies in a consistent and transparent way.